If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+8a-24=0
a = 1; b = 8; c = -24;
Δ = b2-4ac
Δ = 82-4·1·(-24)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{10}}{2*1}=\frac{-8-4\sqrt{10}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{10}}{2*1}=\frac{-8+4\sqrt{10}}{2} $
| 2/3y+3y=-1=219 | | 4(x+3)-3x=12 | | 9q-6q-3q+q=11 | | u-4.9=3.86 | | 14=s/4+10 | | 128=6h+86 | | 10x=7*8 | | 14h-7h+4h-7h-h=12 | | 2x−4(4−9x)=4(7x+8) | | 2x+9+2x=3x-7+x | | 7x=55.3 | | 40=50x/1000-100x | | -7b6=2b-78 | | 4a-4a+a=18 | | -2=2+b/4 | | 3x+3=-6-x | | 7=-x/4+12 | | r-(-44.32+25.50)=116.08 | | -7x=-6x-7 | | 135=2x+25135=2x+25135=2x+25135=2x+25135=2x+25135=2x+25135=2x+25 | | 2(3y+10)=18 | | 15y-92=12y-9 | | 2x-11(4x-10)=644 | | Z=z+64 | | -32+8z=72 | | -p/5-10=6 | | 10(i-1)=30 | | 3(i+7)=45 | | 3y+15=-18 | | 2(5i-5)=40 | | (2x+4=120 | | n÷20=17 |